Screen bundles of Lorentzian manifolds and some generalisations of pp-waves
نویسنده
چکیده
A pp-wave is a Lorentzian manifold with a parallel light-like vector field satisfying a certain curvature condition. We introduce generalisations of pp-waves, on one hand by allowing the vector field to be recurrent and on the other hand by weakening the curvature condition. These generalisations are related to the screen holonomy of the Lorentzian manifold. While pp-waves have a trivial screen holonomy there are no restrictions on the screen holonomy of the manifolds with the weaker curvature condition. MSC: 53B30; 53C29; 53C50;
منابع مشابه
On $(epsilon)$ - Lorentzian para-Sasakian Manifolds
The object of this paper is to study $(epsilon)$-Lorentzian para-Sasakian manifolds. Some typical identities for the curvature tensor and the Ricci tensor of $(epsilon)$-Lorentzian para-Sasakian manifold are investigated. Further, we study globally $phi$-Ricci symmetric and weakly $phi$-Ricci symmetric $(epsilon)$-Lorentzian para-Sasakian manifolds and obtain interesting results.
متن کاملOn Lorentzian two-Symmetric Manifolds of Dimension-four
‎We study curvature properties of four-dimensional Lorentzian manifolds with two-symmetry property‎. ‎We then consider Einstein-like metrics‎, ‎Ricci solitons and homogeneity over these spaces‎‎.
متن کاملThe conformal analog of Calabi-Yau manifolds
This survey intends to introduce the reader to holonomy theory of Cartan connections. Special attention is given to the normal conformal Cartan connection, uniquely defined for a class of conformally equivalent metrics, and to its holonomy group the ’conformal holonomy group’. We explain the relation between conformal holonomy group and existence of Einstein metrics in the conformal class as we...
متن کاملOn causality and closed geodesics of compact Lorentzian manifolds and static spacetimes
Some results related to the causality of compact Lorentzian manifolds are proven: (1) any compact Lorentzian manifold which admits a timelike conformal vector field is totally vicious, and (2) a compact Lorentzian manifold covered regularly by a globally hyperbolic spacetime admits a timelike closed geodesic, if some natural topological assumptions (fulfilled, for example, if one of the conjuga...
متن کاملPeriodic Geodesics and Geometry of Compact Stationary Lorentzian Manifolds
We prove the existence of at least two timelike non self-intersecting periodic geodesics in compact stationary Lorentzian manifolds and we discuss some properties of the topology of such manifolds. In particular, we show that a compact manifold M admits a stationary Lorentzian metric if and only if M admits a smooth circle action without fixed points.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008